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Abstract

In this paper, a novel ”non-parametric” surrogate model method is introduced.

The new method extracts geometric information from the surface mesh of the

simulation domain using Graph Neural Networks (GNNs) and predicts the two-

dimensional distributions of flow variables (in forms of contour maps) using Con-

volutional Neural Networks (CNNs). This method can automatically extract

relevant geometric information from surface mesh, while existing data-driven

surrogate model methods need manual parameterization, which may introduce

additional uncertainties. Existing methods can only process geometries defined

by their specific parameterization methods because the inputs of existing surro-

gate models are human-defined geometric parameters, while new methods can

process any geometries with the same topology because its input is the surface

mesh. This allows users to access more design variations from different sources

to create a larger database. In addition, this novel surrogate model method is

able to predict the distributions of variables, not only the integrated values of

performance. This paper demonstrates this novel surrogate model method with

its application on optimization of a low-pressure steam turbine exhaust system

(LPES). The new surrogate model uses 10 surface meshes of the LPES as input
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and predicts the power contour at the exit of the last stage. To build the surro-

gate model, altogether 582 numerical simulation designs have been generated,

which contains two types of geometries defined by different methods. Among

them, 550 cases are used for training, and 32 cases are used for testing. The

power output of the last two stages of the turbine predicted by the surrogate

model has 0.86 % difference compared with those of numerical simulations. The

structural similarity index measure (SSIM) is used to measure the differences

between the simulated and predicted two-dimensional power distributions at

the exit of the last rotor, where the average SSIM of 640 contours is 0.9594 (1.0

being identical).

Keywords: surrogate model method, optimization, graph neural networks,

parameterization

1. Introduction

Figure 1: Process of existing surrogate model method.

The motivation of this study is to develop a surrogate model method

for aerodynamics optimization, especially for fluid domains that have complex

geometries. The surrogate model can accelerate the optimization by utilizing

the results of previous simulations to evaluate the performance of new designs.5

As shown in Fig 1, one key step of building a surrogate model is manual param-

eterization, which is to choose some geometric parameters to describe geometry.

In this step, if using too few parameters, some geometric information will be lost
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because it is insufficient to describe geometries with high-order surfaces (e.g.,

airfoils and blades). On the other hand, using too many parameters or choosing10

irrelevant parameters will cause the over-fitting problem [1]. It is recognized

by the authors that manual parameterization is the bottleneck that prevents

further improvement of the surrogate model method.

Figure 2: Comparison among numerical simulation (first column), existing surrogate model

method (second column) and novel surrogate method (third column).

A novel surrogate model method has been developed in this study, which es-

tablishes a mapping relationship between the surface mesh of fluid domain and15

two-dimensional distributions of fluid variables (in the form of contours) with

GNNs, CNNs and Conditional Variational Autoencoder (CVAE). As shown in

Fig 2, the new method can process surface mesh directly and extract relevant

geometric features according to their significance to the result. Compared with

the existing surrogate model, the uncertainty is reduced by avoiding manual pa-20

rameterization. This also allows utilizing different types of designs from different

sources because the input of the model is the surface mesh, not user-defined pa-

rameters. In addition, the new method also has the ability to predict contours

like numerical simulation.
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In the recent decades, a lot of surrogate model methods appeared, which25

can be loosely categorized into: (1) Polynomial Response Surface Method [2];

(2) Kriging Model [3]; (3) Radial Basis Function and Extended Radial Basis

Function [4]; (4) Artificial Neural Network [5]; (5) Support Vector Machine [6].

However, previous studies focus on the regression models, and the uncertainties

generated in the parameterization limit the upper boundary of accuracy. Also,30

the surrogate models trained by geometric parameters can only process designs

defined by the same parameterization method, which limits further increase of

database. To overcome these problems, a new strategy is adapted with the help

of new machine learning tools.

Recently, different kinds of neural network have attracted increasing at-35

tention in various domains. These powerful tools inspired the idea of non-

parametric surrogate model method to directly process surface mesh of

fluid domain and predict two-dimensional distributions of fluid variables. Com-

pared with existing surrogate model methods, the new method has the ability

of predicting two-dimensional distributions of variables (in forms of contour)40

by utilizing CNNs to process the images. With the combination of con-

volutional layers, it can extract information from graphs, and recognizes the

convolutional result with multi-layer perceptron [7]. In this study, CNNs are

used to predict the contours based on the latent distribution.

Another key contribution of this work is to introduce GNNs to process45

surface mesh. The nature of the graph operation of GNNs make it capable to

process the non-Euclidean domain by defining the connectivity of mesh points,

while CNNs are only able to process regular Euclidean data like figures. Among

existing GNNs variants [8]. GNNs are categorized into three types: Recurrent

GNNs, Spatial GNNs and Spectral GNNs. In this study, the surrogate model is50

built based on Spectral GNNs for its strengths in extracting features from large

mesh [9]. Spectral GNNs are built on signal processing theory. The key step,

convolutional operation, is done by Chebyshev polynomial approximation [10].

In this study, GNN can extract geometric information more comprehensively by

optimizing parameters in the neural networks via back propagation of loss. This55
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is to pick relevant information based on the feedback of prediction error, which

avoids loss of geometric information and over-fitting problem. Because the new

method uses the surface mesh as the input directly, it can process any geometry

with the same topology structure. This enables the new model to access designs

from different sources. The new surrogate model can process both unstructural60

mesh and structural mesh as the input thanks to the ability of GNN to process

non-Euclidean data.

2. Methodology

The present surrogate model consists of two parts: optimization part (Sec. 2.1)

and machine learning part (Sec. 2.2). The optimization part is used for accu-65

mulating the database for the surrogate model because the designs generated by

the optimizer are similar to designs that will appear in future optimization. The

designs are generated by Genetic Algorithm (GA) because it can explore the de-

sign space more comprehensive compared with the gradient-based optimization

method.70

2.1. Optimization

In the optimization scenarios, the surrogate model will be used to evalu-

ate the performance of designs in the framework of optimization, which will

replace numerical simulation and predict the performance of the design. But

if the design is quite different from the existing designs in the database, this75

optimization iteration still needs the result of additional numerical simulation

and then adds it to the surrogate model. Therefore, ideally, the optimization

will run in the hybrid mode shown in Fig 3.

2.2. Machine Learning

The machine learning part is to train the surrogate model. It mainly consists80

of two parts: mesh encoder (Sec. 2.2.1) and conditional variational contour

decoder (Sec. 2.2.2).
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Figure 3: The pipeline of the optimization process using the surrogate model.

2.2.1. GNNs-based Mesh Encoder

Inspired by a mesh autoencoder [11], the mesh encoder used in this study

compresses the surface mesh to a latent vector with a combination of different

hidden layers. In this study, the surface mesh of the design is defined by the co-

ordinates of n vertices and edges, M=(V,E). V is the n vertices in the Euclidean

space, which is a n×3 vector. The edges, E, are represented by the sparse ad-

jacency matrix A. Its size is n×n, where Aij = 1 denotes a connection between

vertex i and vertex j. Otherwise, Aij = 0. The most important layers used in

the mesh encoder is the fast spectral convolution layer. The mesh convolution

operator ∗ is defined as a Hadamard product in Fourier space:

x ∗ y = U((UTx)� (UT y)) (1)

To reduce the computational cost, convolution is conducted by a kernel gθ with

Chebyshev polynomial of order K.

gθ (L) =

K−1∑
k=0

θkTk(L̃) (2)

where L̃ = 2L/λmax − In is graph Laplacian matrix. It is defined as L=D-

A, where diagonal matrix Dii =
∑
j Aij . And θk are the coefficients of the
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Chebyshev polynomials. Tk can be expressed as:

Tk(x) = 2xTk−1(x)− Tk−2(x) (3)

with the initial condition T0 = 1 and T1 = x. This represents a Chebyshev

polynomial of order k.85

With the mesh filter shown above, the fast spectral convolution layer can be

expressed as the following equation with n×Fin input and n×Fout input

yj =

Fin∑
i=1

gθij (L)xi (4)

where yj means the jth feature.

Another important layer used in the mesh encoder is the mesh sampling

layer, which includes the down-sampling layer and up-sampling layer in autoen-

coder [11]. The mesh sampling layer is to represent mesh in multi-scales so that

convolution layers can capture the local and global geometric information. In90

this study, only a down-sampling layer is used in the surrogate model. The down-

sampling operation is conducted by a transform matrix Qdown ∈ {0, 1}n×m,

where m is the number of vertices in the original mesh and n is the number

of vertices in the down-sampled mesh. Qdown(p, q) = 1 means the q-th vertex

is kept during the down-sampling, while Qdown(p, q) = 0 means the vertex is95

discarded. The transform matrix is optimized to minimize the surface error by

quadric matrices [12].

2.2.2. CNNs-based Contour Autoencoder

Contour decoder is built by CNNs-based CVAE. AutoEncoder (AE) uses

CNNs to compress graphical data to a latent vector and then reconstruct the

graph with the latent vector. The neural network is trained to reconstruct

the graphs with less error. Variational AutoEncoder (VAE) uses variational

inference to estimate the latent vector rather than directly encoding from input

graph [13]. The latent vector z can be estimated by observation vector x using

the following equation:

p(z|x) =
p(x|z)p(z)
p(x)

(5)
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Figure 4: A basic block of Residual neural network. Figure adapted from [14]

However, p(z|x) is usually very difficult to compute directly. Therefore, another

distribution q(z|x) is used to approximate the p(z|x). The Kullback-Leibler di-100

vergence is used to measure the difference between two probability distributions,

which will be minimized during the training process. CVAE adds conditions into

the latent distribution so that different classes of input data are categorized into

different groups. In this study, conditions (blade passages index) are added into

the latent distribution twice to label the input data.105

In the CVAE, the contour decoder used Residual neural Network (ResNet),

a kind of classical artificial neural network, which is inspired by pyramidal cells

in the cerebral cortex. ResNet simulates this by building shortcuts to skip some

layer, rather than passing information layer by layer. Fig 4 shows a basic block

of ResNet. F(x) is to fit the residual between x and target mapping H(x) rather110

than directly fitting H(x). It is easier for the optimizer to minimize the residual

to zero [14]. In this study, more hidden layers are added to fit the highly non-

linear relationship between input and output, but the performance decreases

rapidly with more layers. To solve the degradation problem, ResNet is adapted

because it can pass information from front layers to rear layers, which reduces115

the loss of information in the hidden layers.
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Figure 5: Neural network structure

Figure 6: The change of feature dimension in the network.
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3. Surrogate Model Setup

3.1. Neural Network Structure

The neural network is built under the framework of Pytorch. Fig 5 shows the

main structure of network. Fig 6 shows the change of feature dimension through120

the network. The input is 10 surface meshes, which have 195200 vertices in total.

All the samples need to be interpolated to the same number of mesh vertices to

represent the geometry at the same details level. Therefore, the input data is

the coordinates of vertices (195200×3) and adjacency matrix (195200×195200).

The mesh encoder has 6 mesh encoder blocks. The size of filters in the front 4125

blocks is 16, and it is 32 in the rear 2 blocks. A larger filter size is to capture

global geometric features. After the mesh encoder, the mesh is compressed into

a 128×1 latent vector. Conditions (blade passage index) are added to the latent

vector. Then, two fully connected layers are used to estimate the mean vector

and variance vector of latent distribution. Conditions (blade passage index) are130

added into the latent distribution again. The latent distribution is reshaped to

be the input of the contour decoder. In the contour decoder, the first two blocks

are ResNet blocks, and the rear two blocks are basic blocks.

3.2. Mesh Encoder Block

The structure of mesh encoder block is illustrated in Fig 7. One basic block135

is consist of a Chebyshev convolution layer, a normalization layer (batch normal-

ization), an activation layer (the rectified linear unit function), a down-sampling

layer and a pooling layer (max pooling layer). The mesh encoder is consist of

several these basic blocks. The number of blocks depends on the size of mesh

vertices and latent vector. More basic block means a smaller latent vector,140

which contains less geometric information. But larger latent vector needs more

training cases to prevent over-fitting. Inside the basic block, the Chebyshev

convolution layer is to scan the vertices with Chebyshev polynomial filter and

convert them to a vector. The normalization layer is to normalize the value of

vectors in the same batch. And the activation layer is to amplify the differences145
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Figure 7: Mesh encoder basic block

of values in the vector. The down-sampling layer is to drop out irrelevant ver-

tices based on the transformation matrix. The pooling layer is to keep the most

significant values and discard other values, which reduces the dimension of the

vector. After several basic blocks, relevant geometric information is picked to

form the latent vector.150

3.3. Contour Decoder Blocks

Contour decoder consists of two types of blocks: ResNet block and basic

block. ResNet block is shown in Fig 8a, which has three layers and one shortcut.

The basic block is shown in Fig 8b, which has four layers. The contour decoder

has two ResNet blocks, two basic blocks, and the number of blocks can increase155

or decrease according to the size of latent distribution and the contours.

3.4. Loss Function

In this study, the loss function of the neural network consists of three types

of losses: mean squared error (MSE) loss, Kullback-Leibler divergence (KLD)

loss and structural similarity loss.160
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a: Basic block b: ResNet block

Figure 8: The basic block (a) and ResNet block (b) for contour encoder

Mean squared error measures the average of pixel-wise error between the

contour predicted by model (Yi) and contour predicted by numerical simulation

(Ŷi). It is defined mathematically by:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (6)

KLD [15] measures the difference between one probability distribution and

the reference probability distribution. In variational autoencoder, KL loss is

the sum of all the KLD between the components in latent distribution and the

standard normal distribution. With minimizing the KL loss, the latent distri-

bution is closer to the standard normal, which can improve the interpolation

and extrapolation ability of the surrogate model. KLD can be defined by:

KLD(p, q) = −
∫
p(x)logq(x)dx+

∫
p(x)logp(x)dx

=
1

2
log(2πσ2

2) +
σ2
1 + (µ1 − µ2)2

2σ2
2

− 1

2
(1 + log2πσ2

1)

= log
σ2
σ1

+
σ2
1 + (µ1 − µ2)2

2σ2
2

− 1

2

(7)

As it is to measure the KLD between the components in latent distribution

and the standard normal (σ2 = 1, µ2 = 0), it can be simplified as the following
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equation for convenience:

KLloss =

n∑
i=1

(σ2
i + µ2

i − log(σi)− 1) (8)

where µ is the mean vector, σ is the variance vector.

Structural similarity loss, or Structural Similarity Index Measure (SSIM) [16],

is a method to measure the similarity between two figures. Here, it is used to

optimize the neural network to make predicted contours and simulated contours

more structurally similar. It is defined by:

SSIM(Yi, Ŷi) =
(2µYi

µŶi
+ c1)(2σYiŶi

+ c2)

(µ2
Yi

+ µ2
Ŷi

+ c1)(σ2
Yi

+ σ2
Ŷi

+ c2)
(9)

where µYi
, µŶi

are the mean of Yi and Ŷi, σ
2
Yi
, σ2
Ŷi

are the variances of Yi and165

Ŷi, σYiŶi
is the covariance of Yi and Ŷi, c1, c2 are two variables to stabilize the

division with weak denominator.

Finally, the loss function of the surrogate model is defined by the following

equation:

loss = k1MSE + k2KLD + k3(1− SSIM) (10)

where three coefficients k1, k2 and k3 are user-defined hyperparameters.

4. Demonstration of Non-parametric Surrogate model Method

To demonstrate the new method, a Low Pressure Steam Turbine Ex-170

haust System (LPES) is used as an example. In this section, the mesh gen-

eration process and numerical simulation setup of this example are introduced

in details.

4.1. Introduction Low-pressure Steam Turbine Exhaust System

LPES is designed to recover the kinetic energy leaving the low-pressure steam175

turbine and convert it to static pressure rise for the condenser. It usually con-

sists of three parts: an axial-to-radial diffuser, an asymmetric collector, and an

extension.
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Figure 9: A typical down-flow type low pressure exhaust system for large steam turbine.

Figure adapted from [17].

It is quite challenging to build surrogate model for LPES with existing sur-

rogate model method because parameterization of geometry is problematic.180

Fig 9 shows a parameterization method to define the geometry of the system,

namely, the diffuser length ratio (L1

L0
), diffuser area ratio (A1

A0
), flow guide height

ratio (H1

L0
), diffuser turning angle (∆θ), tip kink angle (Θtip), hub kink angle

(Θhub), hood height ratio (H1

L0
) and hood width ratio (W1

L0
). With these geo-

metric parameters, there are still many geometric features missing, for example,185

the curvature distribution of the diffuser, the height change of the collector, the

width change of the extension and many more details. If using more parame-

ters to describe the geometry, it needs more training cases. And the irrelevant

parameters falsely selected by users will cause the over-fitting problem and re-
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Figure 10: Framework of mesh generation process.

duce the accuracy of prediction. In summary, LPES is a proper example to190

demonstrate the advantages of new method.

In the dataset of this study, there are two types of geometries. One is defined

by 95 parameters, the other one is defined by 66 parameters. The first one firstly

defines the cross-section of diffuser and collector, and then revolves it with an

ellipse equation to generate circumferential distribution. It also has asymmetric195

features in extension. The second one directly defines the cross-section along

the axial direction with ellipse equations. These two types of geometries are

used to test the ability to process geometries from different sources.

4.2. Mesh Generation

As shown in Fig 10, mesh generation starts from the coordinates of control

points given by GA. The control points will be used to generate Non-Uniform

Rational B-Spline (NURBS) surfaces, and then evaluate the NURBS surfaces

to generate the surface mesh. These surface meshes are the input of surrogate

model. Volume mesh will be generated by solving the Laplace equation:
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∂2x

∂i2
+
∂2x

∂j2
+
∂2x

∂k2
= 0

∂2y

∂i2
+
∂2y

∂j2
+
∂2y

∂k2
= 0

∂2z

∂i2
+
∂2z

∂j2
+
∂2z

∂k2
= 0

(11)

where x, y, z are the coordinates of mesh vertices and i, j, k are indices of mesh200

vertices. The boundary condition is defined by the coordinates of surface mesh.

Since the Laplace equation represents a potential field, equipotential lines do not

intersect and are orthogonal at vertices. The volume mesh can be generated by

solving x, y, and z coordinates potential field respectively. The mesh generation

method used in this study is able to generate mesh for the fluid domain with205

the same topology, regardless of the change of geometry.

4.3. Numerical Simulation Setup

4.3.1. Simulation Domain

Figure 11: The geometry of the last two low pressure stages. Since the inlet boundary

condition on the left-hand side is known, the surrogate model is to predict target contour at

the right-hand side.

The fluid domain of numerical simulations includes: two low-pressure stages

of turbine, an axial-to-radial diffuser, a collector and an extension. Fig 11210

shows the geometry of two low-pressure stages, which is from a typical large
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Figure 12: The geometry of exhaust hood. The white arrows represent inlet boundary and

the yellow arrows represent outlet boundary.

steam turbine. It can generate a representative inlet boundary condition for

the exhaust hood. Fig 12 illustrated the axial-to-radial diffuser, collector and

extension in the downstream.

4.3.2. Simulation Setup215

The solver used for the numerical simulations is Ansys CFX, which is a

widely-used commercial CFD solver for the research community and industry.

The simulation is a Reynolds-averaged Navier–Stokes (RANS) simulation, which

uses k − ε turbulence model [18].

The inlet boundary condition is applied at the inlet of the simulation domain,220

which has total pressure and total enthalpy. And the outlet of the simulation

domain is at the end of extension, which is applied with static pressure boundary

conditions. To perform the part-load simulations, the total pressure is reduced

at the inlet to reduce the mass flow rate and work output. The static pressure at

the outlet is 6.2kPa due to the steam property at the condenser. For the property225

of the working fluid, steam, IAWPS data has been used, which is embedded in

CFX and also widely used in the research community and industry.

Another setup worth mentioning is the interface treatment method between

stages and the inlet of the diffuser. Because the downstream of the last two
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stages are asymmetric, it is necessary to model the circumferential non-uniformity.230

Multiple mixing plane method from literature [18] is used in this study. As

shown in Fig 13, only four-blade passages are simulated to generate inlet flow

conditions for a low-pressure exhaust hood, which means one blade passage is

responsible for a 90-degree section of the diffuser. The outlet boundary condi-

tions of blade passages are copied to cover the section. Multiple mixing plane235

method, though losing accuracy with only 4 blade passages, can reduce the

computational cost considerably.

Figure 13: Demonstration of multiple mixing plane method. Four blade passages are modelled.

Each of them generates inlet boundary condition for a 90-degree section of exhaust hood.

4.4. Processing of Numerical Simulation Results

The objective of GA-based optimization is to increase power output of the

last two low pressure steam turbine stages. It is calculated by the difference

between power goes through inlet and outlet of the last two stages, which is

summed value of all the elements of contour map. Assuming the system is

adiabatic, the power of each element is obtained by the product of local total

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 June 2021                   



enthalpy and local mass flow rate:

∆Ẇ = ṁh02 − ṁh01

=

n∑
i=1

ṁi2hi2 −
n∑
i=1

ṁi1hi1

(12)

Since the inlet boundary condition is known in the simulation, only the total

enthalpy contour and mass flow rate contour at the outlet of the last two stages240

are extracted from numerical simulations to generate power contour as shown

in Equation 12, which will also be the output of the surrogate model. Because

of the multiple mixing plane method, there are four blade passages for each

simulation, and five workload conditions for each design. Admittedly, there is

certainly some uncertainties in the numerical simulations, but it is not primary245

concern in this paper since the key of this study is to develop a new surrogate

model method.

5. Test and Result

5.1. Test Setup

To test the surrogate model, 32 cases are randomly selected from 582 cases.250

Therefore, there are 640 contours to predict in total because each case has 4

blade passages and 5 workload conditions. And during the training, there is a

k-fold cross validation, which means 55 cases of the remaining 550 cases will be

used for validation every 10 epochs.

The result of surrogate model are contours of power at the outlet of the last255

rotor. There are 4 blade passages modelled for each simulation, and 5 workload

condition for each design. This means there are 20 contours for one design.

As mentioned above, there are two types of sub-datasets. One has 333

training cases, and the other one has 249 training cases. During the training and

test, two sub-datasets are mixed with each other to test the ability of processing260

different kinds of geometries. In the test, there are two test sub-datasets, both

of which contains 64 contours.
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5.2. Test Metrics

Similar with the loss function (Sec. 3.4), the performance of surrogate model

is also evaluated by three different metrics:265

• Mean squared error is used to measure the average of pixel-wise error

between the model prediction contour (Yi) and the ground truth contour

(Ŷi);

• SSIM is used to evaluate the structure similarity level between the model

prediction contour (Yi) and the ground truth contour (Ŷi). SSIM is an270

index between 0 and 1, where the SSIM = 1 two contour are identical;

• Summed value error (SVE) measures the differences of summed value,

which is defined by the following equation:

SVE =

∑n
i=1 yi −

∑n
i=1 ŷi∑n

i=1 ŷi
(13)

where yi is the value of ith pixel of predicted contour, and ŷi is the value

of ith pixel of target contour. This error also indicates the error in the

predicting averaged value, like averaged pressure, averaged temperature,

averaged velocity of a surface.275

5.3. Test Result

Fig 14 shows some representative results of the test cases, which presents

some typical flow features of 5 workload conditions. Contour results are illus-

trated in Fig 14, which shows that it can predict most flow features of contours.

For example, the separations at the hub part are well captured in the contours280

of 50% workload condition. And the vortices are also well predicted in the

contours of 70% workload condition.
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Figure 14: Contour results of computational fluid dynamics (CFD) and machine learning

(ML) of some typical flow features at five workload conditions (50%, 60%, 70%, 85% and

100%). Unit: 1 × 104kJ/s 21
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Table 1: Summary of Result. Sub-dataset1 are geometries defined by 95 parameters and

sub-dataset2 are defined by 66 parameters. Details in Sec. 4.1

Work Condition Performance Metrics Dataset Sub-dataset1 Sub-dataset2

MSE Loss 0.0047 0.0038 0.0056

50% Similarity Measure 0.9541 0.9520 0.9561

Summed Value Error 0.0060 0.0068 0.0052

MSE Loss 0.0068 0.0042 0.0094

60% Similarity Measure 0.9482 0.9517 0.9447

Summed Value Error 0.0096 0.0122 0.0070

MSE Loss 0.0017 0.0016 0.0019

70% Similarity Measure 0.9632 0.9602 0.9661

Summed Value Error 0.0089 0.0095 0.0082

MSE Loss 0.0016 0.0017 0.0016

85% Similarity Measure 0.9649 0.9618 0.9679

Summed Value Error 0.0090 0.0104 0.0076

MSE Loss 0.0019 0.0019 0.0020

100% Similarity Measure 0.9668 0.9641 0.9695

Summed Value Error 0.0094 0.0108 0.0081

MSE Loss 0.0033 0.0026 0.0041

Mean Similarity Measure 0.9594 0.9580 0.9609

Summed Value Error 0.0086 0.0099 0.0072

Table 1 shows the result of all 640 test contours. Among them, there are two

sub-datasets that contain different types of geometries, both of which contain

16 cases and 320 contours. In the Table 1, the averaged SVE of dataset is 0.86285

%, which shows it is able to predict performance for optimization. The SSIM

of sub-dataset1 and sub-dataset2 are 0.9580 and 0.9609 respectively, which has

no significant difference. This results proves the generalization capability of the

proposed method in different kinds of geometries.

In the Fig 15, x-axis represents the results of surrogate model and y-axis290
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Figure 15: Comparison between results of numerical simulation and surrogate model. The

closer to the line y = x means higher accuracy.

represents the results of numerical simulation. The results of 5 workload con-

ditions is categorized into 5 kinds of colors. Fig 15 shows most of points are

close to y = x, which means lower prediction error. There are 8 points for each

workload condition significantly further to y = x. They are result of 2 designs,

which is quite different from designs in the training dataset.295

6. Discussion

The new surrogate model method established a mapping relationship be-

tween the surface mesh of fluid domain and two-dimensional distribution of

flow variables. The application of this new method can be extended beyond the

area of aerodynamics optimization. Since it can process both structural and300

unstructural mesh, it is also applicable in various problems in different fields,

which need to solve partial differential equations, like finite element analysis

and electromagnetic analysis.

This method can also be used as an inverse method. It can be achieved by

exchanging the input and output of the mapping relationship built in this paper.305
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To be more specific, users import the two-dimensional distributions of physical

properties they want into the contour encoder, and the designs are generated

by the mesh decoder.

7. Conclusion

This study presents a novel non-parametric surrogate model method, which310

is demonstrated using LPES. The new method directly takes surface mesh as

input, which reduces the uncertainties introduced by manual parameterization

and loss of geometric information. This feature gives the new method great

advantages in building surrogate model for designs with complex geometries. In

the test, the average summed value error of 128 contours is 0.86 %.315

This method also shows high flexibility and compatibility. Because the input

of new method is surface mesh, it can take geometries with the same topology

as database. This means it is compatible with geometry defined by different

methods. It is very useful for further increasing the size of database of surrogate

model using variable sources of data.320

Compared with existing surrogate model methods, this new method can

also predict two-dimensional distribution of variables (contour) based on surface

mesh. Contours can help designers to discover physical mechanism, improve

their designs and many other purposes. In the test, the average similarity score

of 640 contours is 0.9594, which can reproduce most flow features.325

The essence of this new method is the creation of a unique mapping rela-

tionship between the surface mesh of simulation domain and two-dimensional

distribution of variables. With this method, the optimization process can be

accelerated by utilizing the result of database to evaluate the performance of

new designs.330
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